
Short Paper: The Security Analysis of a BLE Connected Health Device

Paul L. R. Olivier1, Florent Galtier1, Guillaume Auriol1,2, Vincent Nicomette1,2
1LAAS-CNRS, 2Université de Toulouse, INSA

Abstract—IoT devices represent a prime target for security
threats. Unfortunately, effective security practices are not
widespread as they should be, in particular concerning the
health sector. This paper conducts a security analysis of a
connected blood pressure monitor, revealing six significant
vulnerabilities. We carry out four attack scenarios to high-
light the dangers they pose to its users.

Index Terms—Security, Health, Bluetooth Low Energy

1. Introduction

Wireless communications offer numerous benefits,
particularly in enhancing user interaction with IoT de-
vices. The seamless connectivity provided by technologies
like Bluetooth Low Energy (BLE) has become a key
selling point for manufacturers, facilitating a wide array
of applications. For instance, it enables the integration of
companion applications on smartphones, allowing for ad-
ditional features and functionalities. This integration also
enables manufacturers to optimize the device hardware to
offload demanding computing tasks to smartphones or re-
mote servers. This, in turn, improves the overall efficiency
of the device. Moreover, the wireless connection allows
manufacturers to introduce new features post-deployment
without the need to wait for every functionality to be fully
implemented before shipping the devices. This approach
significantly reduces the time-to-market, ensuring a re-
sponsive product development cycle.

Despite these advantages, the connection link and the
information it carries must be properly secured. Imple-
menting robust security measures is a non-trivial task,
as demonstrated by the multitude of attacks on wireless
protocols. The impact of such attacks can be devastating,
posing serious threats to user privacy and system integrity.

This underlines the necessity of external audits on the
final product to identify potential security vulnerabilities
that may have been overlooked during the development
phase. Various frameworks were developed with this goal
in mind [2]. Unfortunately, we still observe today poor se-
curity practices in implementing wireless communication
for IoT devices.

In this paper, we conduct a security analysis of a
connected blood pressure monitor. It is a health device for
people with medical conditions such as hypertension, hy-
potension, diabetes, and other cardiovascular conditions.
It can also be beneficial for people interested in prevention
or lifestyle monitoring, such as pregnant women, athletes,
fitness enthusiasts and seniors. Overall, such a device tar-
gets a large portion of the population and its compromise
may present a risk for the user’s health.

Through our study, we demonstrate the security impli-
cations resulting from an insecure implementation of the

Bluetooth Low Energy protocol. In particular, we show
that the lack of authentication and integrity checks leads
to device firmware tampering.

We summarize our contributions as follows:

• Reverse engineer a health device monitoring the
blood pressure and conduct a security analysis of
its components.

• Exploit the 6 vulnerabilities in its BLE implemen-
tation and firmware Over-The-Air update.

2. Background

Bluetooth Low Energy (BLE) is a lightweight variant
of Bluetooth, dedicated to devices needing low energy
consumption. Every BLE-based application using the con-
nected mode is built on top of the ATT (Attribute Profile)
and GATT (Generic Attribute Profile) layers [5]. Both
layers define a client / server model, providing a generic
solution to exchange data between devices. Specifically,
an ATT server is a database of attributes. Each attribute
is composed of an identifier, a type and a value. An ATT
client is able to interact with this database using some
requests. For example, a Read Request allows the client to
read a given attribute, while a Write Request allows mod-
ifying the value of an attribute. The GATT level provides
an additional layer of abstraction to define some services
including characteristics and creates generic profiles for
a given type of device.

3. Analysis

The blood pressure monitor performs three distinct
measures: the diastole, the systole and the pulse. It also
displays if irregularities were observed during the mea-
surements. The device works by inflating a cuff around
the wrist, measuring the pressure exerted by blood on
the artery walls as the cuff deflates. This type of device
is particularly useful for people with medical conditions
related to the heart or interest in monitoring their lifestyle
in a preventive way.

The device can be used alone, however the companion
app helps keeping track of the records. The synchroniza-
tion happens wirelessly when the application connects to
the device via BLE. The user also has the possibility to
enter the measurements manually in the companion app.

Our primary goal is to identify potential vulnerabili-
ties in the implementation of the wireless protocol. It is
essential to assess the device’s ability to secure the data
it handles, particularly when it is related to the health.
Next, analyzing the insight of the firmware allows a
better understanding in the vulnerabilities present on the
device. This involves recognizing the instruction set used,



recovering the program load address, and identifying the
memory layout including the I/O mapping. This can be
achieved through intercepting the firmware update image
for instance. Finally, the most impactful goal is to gain
arbitrary code execution on the device. This not only
serves to validate the identification and exploitation of
vulnerabilities, but also demonstrates their security im-
plications. Furthermore, it aids in comprehending and
mitigating the associated risks.

Considering the goals mentioned earlier, we divided
our analysis in four aspects. We started our analysis
with a network reconnaissance and the companion app
reverse. This allowed us to pinpoint the first flaws in
the device related to its BLE implementation. Then, we
looked at the hardware to get a better picture of the
device’s internals. With this knowledge, we focused on the
firmware to get closer to code execution. While we haven’t
fully achieved this goal, the presented results provide
encouraging prospects for future work.

Throughout the steps of our analysis and the discovery
of novel insights, we systematically searched online for
publicly available information.

3.1. Network

The device uses BLE to synchronize its records with
the companion app. Using an Android Smartphone and a
computer with the Mirage framework [2], we analyzed the
structure of the GATT server on the device, along with
its communications. The GATT server exposed several
services and characteristics such as the firmware version,
name and model. We identified three main manufacturer
specific services for records synchronization, control data
and firmware update.

We have examined the events that occur when the
application connects to the device. For this purpose, we set
up a Man-in-the-Middle (MitM) between the smartphone
and the device. We identify two events triggered on the
connection. First, the application sends the name of the
current user, to which the device acknowledges good
reception. The message has a total size of 20 bytes: two
bytes flag, the entered name and the padding with null
bytes. Second, the application queries the GATT server
for information about the device status. In particular, to
determine if an update is available for the device.

Then, if unsent records are stored, the device
sends them in the form of Handle Value
Notifications on a dedicated characteristic.
The record messages contain a flag, the measured values
(systole, diastole, pulse), a boolean indicating pulse
irregularity, and the date when it was taken.

The MitM was possible because neither authentication
nor encryption are employed during the communication.
The application requests first to pair the device. However,
we did not observe any standard pairing such as described
by the BLE specification [5]. Instead, the application
registers the device from its link-layer address. More-
over, it seems the device does not log any registration
information, allowing anyone to connect and access saved
records without restrictions. We found that the use of the
term “pairing” in the application is confusing, as it could
suggest this security mechanism is implemented in the
communications, while it is not.

3.2. Companion Application

The blood pressure monitor comes with a companion
app designed for recording measures and keep track of
user health over time. For the analysis we focus on the
latest version (2.2.2.5) dating from October 2023.

The APK contains two firmware images corresponding
to the BLE chip. Further details about these images are
provided in Section 3.4.

For GATT services and characteristics, we use the
UUID to identify code sections related to the device
communication. The majority of those sections are con-
tained in the BleService class. We identified the code
responsible for managing the firmware update, handling
the device records and executing various control actions
(e.g., modifying the username).

By manually inspecting the reversed code, we iden-
tified an out-of-bounds read during the parsing of health
record messages. The main cause is the control exerted by
the flags in the frame header over the size read, leading the
application to read beyond its actual size. It may expose
sensitive information or compromise the companion app’s
integrity.

3.3. Hardware

BLE
SoC

App
SoC Serial Bus

LCD
Screen

Pump &
Valve

BLE
Radio Link

OTA Spoofing
MitM

OTA Firmware Update

Pressure
Sensor

Arm
Cuff

LED

Figure 1. System Architecture Overview

The hardware is composed of a main PCB board which
controls the LED, the LCD screen and the pump, and han-
dles the wireless communication. In this analysis, we are
more interested in the two main System on Chip (SoC).
The application SoC is SH79F6488P and manufactured
by Sino Wealth while the BLE SoC is a CC2541 F256
from Texas Instruments. Both SoC implements different
derived versions of the 8-bits 8051 microcontroller.

The board offers several test points. Using the
datasheet of the application SoC, we managed to trace
its JTAG pins. However, after analyzing its signals on an
oscilloscope, we hypothesize that it may be disabled.

Next to the BLE SoC, we identified the serial bus
used to communicate between both SoC. A simple custom
protocol is used, and we managed to partially reverse
it. Each packet is formed of a header, the payload and,
at the end, the checksum of all bytes except the first,
modulo 8 bits. The header is composed of a preamble
(indicating if it is a request or a response), an operation
code and the payload size. The operation may be initiated
by any of the two SoC. We managed to identify the codes
corresponding to initiating a wake-up call, responding
with device information (including firmware revision and
model number), sending the username, and transmitting
the measures (systole, diastole, pulse) along the time.



3.4. Firmware

Because we couldn’t get any access to the running pro-
gram on the hardware, we focused the firmware analysis
on the two binaries embedded in the Android companion
app. The binaries follow the format described in the Texas
Instruments BLE Over-the-Air Download (OAD) [4]. The
images start with 2 bytes CRC-16, the image header and
continue with the firmware content. The image header
follows a public format [4] composed of 2 bytes CRC-
shadow, 2 bytes user-defined image version number, the
image length on 4 bytes, and the 4 bytes user-defined
image identification. In summary, the OAD mechanism
is composed of three images: the boot image manager
(BIM) and two different images called ”A” and ”B”. The
BIM maps into the 8051 interrupt vectors to intercept all
resets and jump to a valid image, B or A. The image A
is cut in half where the upper segment maps to 0x800
and runs the proprietary OAD Target BLE Profile which
is in charge to handle the firmware update. The image B
maps to 0x4000 and implements the BLE stack.

We explored the firmware update procedure as a note-
worthy entry point for code execution. On each connec-
tion, the companion app checks whether the firmware
requires an update, according to the number of the running
version. The outline of the procedure is described by Texas
Instruments [4]. The companion app sends the image
header to the device, and upon acceptance, initiates the
transfer of the firmware image. On completion, the device
validates the image’s CRC-16 against the one sent at
the beginning and finally resets the connection. Despite
being explained in the documentation [4], no encryption
or signature are used for the OAD mechanism.

At the time of writing, we have not extracted or located
the firmware used by the application SoC.

The firmware analysis is an ongoing task. We aim
to focus on better understanding its internal work to be
able to patch it and get code execution on the BLE SoC
(Section 4).

3.5. Vulnerabilities

During the security analysis, we identify 6 vulnerabil-
ities in the different components of the device.

Communication Protocol: the BLE implementation
on the device suffers from vulnerabilities on the pairing,
authentication and communication protocols.

• The pairing mechanism is not implemented at all,
and therefore fails to establish trust between the
two devices. It is responsible for providing authen-
tication, enabling key distribution and negotiating
the shared secrets.

• No authentication is used: both the companion app
and the device do not authenticate to each other.
This enables spoofing attacks for both sides.

• The communication is not encrypted. Data ex-
changed during communication is in clear text and
can easily be obtained.

• The communication does not present any integrity
protection. Data exchanged during the communi-
cation can be manipulated.

Firmware Update

• No encryption is used during the OAD mechanism
despite being available.

• No signature is implemented for protecting the
firmware integrity.

4. Attack Scenario

We describe 4 over-the-air attacks to demonstrate the
severity of the vulnerabilities presented in Section 3.5.

The system model is similar to what was described in
Section 3. It is composed of the blood pressure monitor
and the companion app communicating over BLE. We do
not assume the victim has the monitor device around the
wrist during the attacks, because it records the measures
to download them later to the companion app.

The attacker only knows public information advertised
by the blood pressure monitor over BLE such as the BLE
address. For the OTA spoofing and MitM, we assume the
attacker does not have physical access to the target de-
vices, hence cannot tamper the devices’ operating system
and firmware. For the OTA firmware update, the attacker
needs a way to put the device in the update mode (long
press on/off button).

The attacker has the following four goals:

1) Spoofing the blood pressure monitor to the com-
panion app.

2) Spoofing the app to the blood pressure monitor.
3) Establishing a MitM between the blood pressure

monitor and the app
4) Pushing a custom firmware on the BLE SoC

4.1. Attacks

OTA Spoofing. These attacks are straightforward
as no security mechanism is implemented.

To impersonate the companion app, the attacker sim-
ply connects to the device using BLE. It is then possible
to read the different GATT services, and the records made
by the device.

In the same way, the attacker can advertise fake blood
pressure measures knowing the BLE address, and forge
fake records to poison the history in the companion app.

MitM. Since it is trivial to impersonate both the
device and the companion app, a MitM attack is no more
difficult. Multiple approaches can be considered, but the
easiest is BTLEJuice [1].

The idea consists of first connecting with the blood
pressure monitor to make it stop advertising, and then
using a second BLE device spoofing its address to wait
for a connection request from the companion app. Once
the MitM established, the attacker can easily modify the
transmitted data, such as the device records to tamper the
user’s health history.

OTA BLE Firmware Update. To update the
firmware, the attacker needs a way to put the device in the
firmware update mode. A solution for that is to long press
the on/off button on the device. From that, the attacker
can connect to the device and push the firmware update
with the desired modifications (e.g., backdoor). Neither
encryption nor signing is present in the firmware images.



CRC CRC shadow Version Length

0 16 32 48

Figure 2. Firmware Update Image Header Structure

4.2. Attacks’ Impact

The severity of these attacks are high for several
reasons. First, these attacks are cheap and low efforts.
No security mechanisms are used to protect the link be-
tween the blood pressure monitor and the companion app.
Moreover, the firmware update attack potentially allows
full execution on the BLE SoC. To a greater extent, the
device interacts with humans and report their health status
for storing records. These records may later be used to
decide whether the users should take specific medical
treatment. Therefore, one could use these attacks to falsify
the records, or even change the device’s behavior with a
malicious update. This may lead to erroneous diagnosis
and dangerous medical decisions for the user. Finally, the
absence of cryptography can lead to breaches of the user’s
privacy, especially concerning their medical condition.

5. Experiments

The experiments were carried out using the Braun
wrist blood pressure monitor iCheck 7 BPW4500WE
running the firmware 1.0.15, an Android smartphone with
the companion app version 2.2.2.5, and a computer with
two Bluetooth interfaces.

The Mirage framework [2] includes modules to
launch standard wireless attacks such as MitM and de-
vice spoofing. In particular, we used the ble_master,
ble_slave, and ble_mitm modules.

Application Spoofing. Any device supporting
BLE can connect to the device and run commands, as
no authentication and encryption are implemented in the
device. For instance, we were able to connect and read the
records with a BLE-debugging application such as nRF
Connect For Mobile.

Device Spoofing. First, we cloned the GATT
server of the device to replicate all the services and char-
acteristics that the companion app may need or request.
Then, Mirage is used to generate a new instance of the
GATT server to which the companion app will connect.

MITM. We spoofed both roles to perform the
BTLEJuice [1] MitM attack. In addition, we implemented
a scenario to alter the packets containing health records,
thereby tampering with the companion app history.

Firmware Update. We extended the application
spoofing attack with a Mirage scenario for faking the
firmware version and uploading our modified variant fol-
lowing the OAD process. To confirm our success, we
modified strings in the firmware accessible via the GATT
server, particularly the device information such as the ver-
sion and model. We also had to adjust the leading CRC-16
to align with our changes before uploading the firmware.
Indeed, as represented on Figure 2, each firmware file
begins with a CRC, computed over the whole file [4].

6. Countermeasures

The presented attacks rely on the lack of basic security
mechanisms such as authentication, integrity and encryp-
tion. The main countermeasure against the spoofing and
MitM starts with the implementation of a secure pairing
procedure1. Additionally, other protections described by
the Bluetooth Core Specification [5] Volume 3 Part H and
Volume 6 Part E, should be applied. The firmware update
process should follow the BLE OAD guidelines [4] to use
firmware image encryption and signing.

7. Conclusion & Future Work

We performed a security analysis of a connected blood
pressure monitor and showed that unfortunately, it suf-
fers from several serious vulnerabilities. Some of them
arise from the fact the device does not implement the
security measures recommended by the BLE specifica-
tion [5]. Sadly, this is not an isolated case in the more
general world of IoT devices. Indeed, as shown in several
works [6], [7], a huge majority of recent devices do not
implement secure pairing, and by extension encryption,
or contain vulnerabilities. This issue, especially in health-
related devices, is a big concern for the users’ safety.
Moreover, it has been shown through the last years that
security has not been a priority for manufacturers, and
despite evolution in the standards, most devices remain
unsecure to this day. A way to solve this problem would be
to make it compulsory to implement appropriate security
mechanisms, for instance by the mean of a certification
that all connected objects should undergo.

To further our analysis on this device, we plan to con-
tinue the analysis of the BLE firmware to reach the third
goal on code execution. For instance, inserting a backdoor
or a function which modify the records before sending
them by BLE to the companion app. We also have to
recover and analyze the application firmware responsible
for displaying the measures on the LCD screen and com-
manding the pressure exercised on the wrist by the pump.
Another possibility is to look for deeper vulnerabilities in
the firmware by using dynamic analysis techniques. For
example, the serial bus could be fuzzed, or the firmware
could be rehosted [3] in an emulator allowing full control
over its state.

Responsible Disclosure. In adherence to respon-
sible disclosure practices, the vulnerabilities identified
during the course of this research were reported to the
respective vendor on two separate occasions, in January
and March 2024. Despite these efforts to engage in con-
structive dialogue towards mitigating potential security
risks, no acknowledgments were received from the vendor.

8. Acknowledgment

We want to thank Sebastien Di Mercurio for his
precious help in the hardware analysis. This work has
been partially supported by the French National Research
Agency under the France 2030 labels (Superviz ANR-22-
PECY-0008 and REV ANR-22-PECY-0009).

1. It is recommended to avoid the ”Just-Works” version which relies
on a fixed key.



Figure 3. Both sides of the PCB

References

[1] Damien Cauquil. Btlejuice: The bluetooth Smart MitM Framework,
2016.

[2] Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata,
Mohamed Kaaniche, and Geraldine Marconato. Mirage: towards a
metasploit-like framework for iot. In 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE), 2019.

[3] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexan-
der Bulekov, Brendan Dolan-Gavitt, Manuel Egele, Aurélien Fran-
cillon, Long Lu, Nick Gregory, et al. Sok: Enabling security analyses
of embedded systems via rehosting. In Proceedings of the 2021 ACM
Asia conference on computer and communications security, 2021.

[4] Texas Instruments. BLE Developer’s Guide for Over-the-Air Down-
load for CC254x Version 1.2.

[5] Bluetooth SIG. Bluetooth Core Specification v5.4.

[6] Pallavi Sivakumaran, Chaoshun Zuo, Zhiqiang Lin, and Jorge
Blasco. Uncovering vulnerabilities of bluetooth low energy iot from
companion mobile apps with ble-guuide. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security,
2023.

[7] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang.
Automatic fingerprinting of vulnerable ble iot devices with static
uuids from mobile apps. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.


	Introduction
	Background
	Analysis
	Network
	Companion Application
	Hardware
	Firmware
	Vulnerabilities

	Attack Scenario
	Attacks
	Attacks' Impact

	Experiments
	Countermeasures
	Conclusion & Future Work
	Acknowledgment
	References

